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Executive Summary 

Despite significant advances in vehicle automation and electrification, the deployment of 

autonomous electric mobility-on-demand (AEMoD) services in big cities encounters two major 

bottlenecks, namely, communication/computation delays and charging delays. Additionally, with 

respect to services for individuals with cognitive and physical disabilities, none of the AEMoD 

routing and scheduling algorithms incorporate or prioritize special users’ needs in the 

optimization process. This project established a foundation for innovative, decentralized mobility 

services that also consider the needs of individuals with physical or cognitive disabilities. 

Leveraging both the Internet-of-things (IoT) and its associated fog control capabilities, this 

framework will enable real-time, localized, autonomous, disability-aware, and battery-level-

based dispatching and charging decisions for a fleet of AEMoD services distributed in multiple 

city zones. 

In order to target communication/computation delays, the work presented in this report 

exploited emerging fog-based architectures for localized AEMoD system operations. These 

architectures will soon become widely used, allowing all localized operational decisions to be 

made with very low latency by fog controllers located close to the end applications (e.g., each 

city zone for AEMoD systems). As for charging delays, an optimized, multi-class charging and 

dispatching queuing model, with a partial charging option for AEMoD vehicles, was developed 

for use in each zone. The stability conditions of this model and the optimal number of classes 

were derived. Decisions about the proportions of each class of vehicles to partially/fully charge 

or directly serve priority customers were optimized to minimize system response times by using 

convex optimization and Lagrangian analysis. Analysis results showed the merits of our 

proposed model and optimized decision scheme in comparison to both the always-charge and the 



x 

equal-split schemes. Furthermore, a comparison between the maximum and average problem 

solutions exhibited negligible variance, which favored the use of the maximum solution because 

of its lower complexity.  
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Chapter 1 Introduction 

Urban transportation systems are experiencing tremendous challenges due to the high 

demands of private  vehicle  ownership,  which  result  in  dramatic increases in road congestion, 

parking demand [Mitchell et al. 2010], increased travel times [Schrank et al. 2012], and carbon 

footprint [Emissions Gap Report 2013; U.E.P. Agency 2014]. These problems clearly call for 

revolutionary solutions to sustain the future of private vehicle mobility. Mobility ondemand 

(MoD) services have been successful at providing a partial solution to the increased private 

vehicle ownership problem [Digitalist Magazine 2016] by providing one-way vehicle sharing 

between dedicated pick-up and drop-off locations for a monthly subscription fee and without the 

need for customers to purchase vehicle insurance or to incur maintenance costs. The 

electrification of such MoD vehicles can also gradually reduce the carbon footprint problem. 

However, the need to make extra trips to pick up, drop off, and occasionally refueling /charge 

these MoD vehicles has significantly affected the convenience of this solution and reduced its 

effectiveness at solving urban traffic problems. 

Expected to be game-changers for the success of these services are significant advances 

in vehicle automation and wireless connectivity. With more than 10 million self- driving vehicles 

expected to be on the road by 2020 [Digitalist Magazine 2016], and the vision of governments 

and automakers to inject more wireless connectivity and coordinated optimization on city roads, 

private vehicle ownership has been forecasted to significantly decline by 2025, as individuals’ 

private mobility will further depend on the concept of autonomous electric MoD (AEMoD) 

[Navigant Research 2016; Forbes 2016]. In short, AEMoD systems will enable customers to 

simply press some buttons on an app to promptly get an autonomous electric vehicle to transport 

them door-to-door, with no pick-up/drop- off and driving responsibilities, no dedicated parking 
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needs, no carbon emission, no vehicle insurance and maintenance costs, and extra in-vehicle 

work/leisure times. With all of these ecological, economical, and customer-oriented qualities, 

AEMoD systems are expected to significantly prevail in attracting millions of customers across 

the world and in providing on-demand and hassle-free private urban mobility. 

Despite the great expectations for wide deployment of AEMoD service in the next 

decade, the timeliness of such service (i.e., promptness in providing a ready vehicle to each 

requesting customer with minimum or bounded delays), and therefore its entire success, is 

threatened by two major bottlenecks. First, the expected massive demand for AEMoD services 

will result in excessive, if not prohibitive, computational and communication delays if cloud-

based approaches are employed for micro-operation of such systems (e.g., collecting requests, 

and optimizing dispatching and charging decisions). Moreover, the typical full-battery charging 

rates of electric vehicles will not be able to cope with the significant numbers of vehicles 

involved in these systems, thus resulting in instabilities and unbounded customer delays.   
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Chapter 2 Background and Literature Review 

2.1 Background 

Mobility-on-demand services have been studied from several perspectives, since the 

performance of these systems depends on many factors, such as charging resources, customers’ 

special needs, and waiting time. Recent work has addressed important problems related to 

AMoD systems by building different operation models for them. Zhang et al. (2015) proposed 

two different models: a distributed queuing model that spatially averaged the customers’ queues 

into one queue, and a lumped model that exploited the theory of Jackson Networks. These 

models were employed to analyze the re-balancing between the stations.  

Zhang and Pavone (2016) proposed a lumped spatial-queuing model. Several non-

practical assumptions were made in order to treat the problem as a Jackson Network. The work 

presented by Zhang et al. (2016a) cast an AMoD system into a closed multi-class BCMP queuing 

network model, solving the routing problem for rebalancing vehicles on congested roads. Many 

key factors, however, were not considered in this work in order to simplify the mathematical 

resolution. In addition, none of this reserch considered the computational architecture for 

massive demands on such services, vehicle electrification, and the influence of charging 

limitations on stability. 

Zhang et al. (2016b) presented a model predictive control (MPC) approach to optimize 

the dispatching and scheduling of the vehicles in AMoD systems. It is valuable to apply MPC 

algorithms to minimize the future waiting time of customers, but the proposed system was 

optimized without consideration for AMoD vehicle electrification. The MPC technique was also 

used in more recent work (Tang and Zhang (2017), in which a finite-horizon dynamic 

programming algorithm was proposed  to provide optimal schedules for plug-in electric vehicle 
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(PEV) charging, given statistical information on the vehicles’ future charging demands. The 

focus of this research was more on reducing algorithm complexity in comparison to similar 

algorithms proposed by Rao and Yao (2014) and Bansal et al. (2014). 

Other researchers have designed an artificial neural network to predict the quality of 

service of an MoD system that utilizes a small number of vehicles to meet campus demand 

[Kumru et al. 2017; Kim et al. 2017; Miller and How 2017]. They showed that combined 

predictive positioning and ridesharing approaches could achieve effective MOD fleet 

management performance, but this performance would not be practical at a city scale. 

Treleaven et al. (2013) addressed the vehicle dispatching problem on the basis of 

distances separating vehicles from customers. They employed a combination of the Euclidean 

bipartite matching problem and random permutation theory to minimize the trip cost, but without 

considering charging limitations. Charging AEMoD vehicles has also been studied from different 

perspectives. Some researchres [Korkas et al. 2018; Tushar et al. 2016] proposed optimization 

models to reduce cost in terms of power and energy. Korkas et al. (2016) provided a valuable 

analysis of an approximate dynamic programming system with feedback-based optimization for 

the charging process.  

Tushar et al. (2016) presented a time variant cost optimization for charging at 

Photovoltaics charging stations. Rao and Yao (2014) studied the involvement of smart grids for 

energy cost optimization not only with closed loop and open loop methods, but also by using 

artificial intelligence techniques. These techniques allowed the researchers to introduce several 

agents and complex models, such as considering the vehicles themselves as sources of energy 

that could contribute to the grid. Artificial intelligence (AI) might produce valuable outcomes, 

but the cost and complexity of deploying these methods would be high. Our work was different 
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from that of Korkas et al., Tushar et al., and Rigas et al. (2015) because it aimed to optimize 

system response/waiting times to improve customer satisfaction. 

2.2 Project Contributions 

In this project, we targeted the two limitations related to timeliness that could hinder the 

success of AEMoD systems, namely communication/computation delays and possible system 

instability due to the charging process.  

To resolve the first limitation, we suggest exploiting the new and trendy fog-based 

networking and computing architectures [Cisco 2015; Mao et al. 2017; Mach and Becvar 2017]. 

While long propagation delays remain a key drawback for centralized cloud computing, mobile 

edge computing (MEC) with proximate access is widely agreed to be a key technology for 

supporting various applications for the next-generation Internet with millisecond-scale reaction 

time [Fettweis 2014]. The advantages provided by this technology will allow the handling of 

vehicular networks [Huang 2017] that require instantaneous decision making, such autonomous 

mobility [Markakis et al. 2017b]. Consequently, these architectures can also be involved in 

handling AEMoD system operations in a distributed way. This approach will push the 

operational decision load closer to end customers in each city zone, thereby reducing 

computational complexity and communication delays. Fortunately, this architecture suits the 

nature of many AEMoD fleet operations that are mostly local, such as dispatching and charging. 

Indeed, AEMoD vehicles will be usually directed to pick up customers close to their locations 

and to charge at nearby charging stations. This makes fog-based architectures well-suited for 

localized solutions to guarantee low communication and computation latencies for such local 

management operations. 
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With this limitation resolved by these soon-to-be-deployed technologies, this project 

focused on resolving the second timeliness limitation by proposing a multi-class dispatching and 

charging approach in each service zone. The proposed approach classifies incoming vehicles 

according to their state of charge (SoC) and smartly manages their charging options according to 

the available charging resources in the zone. This management is done by introducing the option 

of no charging or partial charging for vehicles with non-depleted batteries and by assigning the 

full charging option only to vehicles will fully depleted batteries. This multi-class system also 

allocates these vehicles to different classes of customers according to the suitability of the 

vehicles’ SoC for the customers’ trip distance. 

 Given these novel system operation architectures, the question then becomes: What is 

the optimal proportion of vehicles from each class to either dispatch (i.e., with no charging) or to 

partially/fully charge, both to maintain charging stability and to minimize the maximum or 

average response times of the system? To address this question, a queuing model representing 

the proposed fog-based, multi-class charging and dispatching scheme was developed. The 

stability conditions of this model and the number of classes that fit the charging capabilities of 

the service zone were then derived. Decisions about the proportions of each class of vehicles to 

partially/fully charge or directly serve customers were then optimized to minimize the maximum 

and average system response times. Maximum response time minimization was formulated as a 

stochastic linear problem, and and average response time minimization was formulated as a 

convex optimization problems. Optimal decisions were analytically derived for each problem by 

using Lagrangian analysis. Finally, the merits of our proposed optimized decision scheme were 

tested and compared to both the always-charge and the equal split schemes. 
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Chapter 3 Proposed System Model  

3.1 Fog-Based Architecture 

Fog-based architectures have recently emerged as novel distributed edge computing 

architectures both for mitigating the communication and computational burdens on backhaul 

networks and cloud servers, respectively, and for reducing the delays for system analytics and 

decision making. These architectures push computational resources closer to the end entities, 

thus providing them with low complexity and latency analytics and optimization solutions 

through local communication with those resources. The concept of mobile edge computing 

(MEC) was first proposed by the European Telecommunications Standard Institute (ETSI) in 

2014. It was defined as a new platform that provides IT and mobile cloud computing capabilities 

(MCC) within the Radio Access Network (RAN) in close proximity to mobile subscribers [Patel 

et al. 2014]. This led to the emergence of a new research area called fog computing and 

networking [Chaing and Zhang 2016]. It has been widely agreed and proved that MEC will solve 

the delay disadvantages of mobile cloud computing[Fettweis 2014]. Mao et al. (2017) provided a 

clear comparison that showed the benefits offered by MEC in comparison to MCC. The 

supportable latency of MEC is less than 10 milliseconds in comparison to larger than 100 

milliseconds for MCC. It has also been shown that the fog computing has 102 to 104 times higher 

computation capabilities than the minimum requirements for applications with heavy 

computational complexity such as gaming [Satyanarayanan et al. 2009], autonomous driving, 

and instantaneous decision making [Patel et al. 2014; Online]. Moreover, with its shorter 

distance to end users, fog computing supports less backhaul usage, thus alleviating congestion 

[Tran et al. 2015; Markakis et al. 2017a]. In addition to these advantages, fog-based architectures 

are highly energy efficient with respect to supporting computation offloading and are therefore 



10 

considered to be green technologies [Mach and Becvar 2017; Somov and Giaffreda 2015; 

Markakis et al. 2017b]. 

As mentioned earlier, our proposal to employ a fog-based architecture for AEMoD 

systems was justified by the fact that many AEMoD operations (e.g., dispatching and charging) 

are localized, with very high demand and the the need for instantaneous decision-making. 

Indeed, the vehicles located in any city zone are the ones that can reach customers in that same 

zone within a limited time frame. They will also charge at nearby charging points within the 

zone. Figure 3-1 illustrates a candidate fog-based architecture that can support real-time micro-

operational decisions (e.g., dispatching and charging) for AEMoD systems with extremely low 

computation and communications delays. The fog controller in each service zone is responsible 

for collecting information about customer requests, vehicle in-flow to the service zone, vehicle 

state of charge (SoC), and the available full-battery charging rates in the service zone. Given the 

collected information, the architecture can promptly make dispatching, and charging decisions 

for these vehicles in a timely manner. 
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Figure 3-1 Fog-based architecture for AEMoD system operation. 

 

3.2 Multi-Class Dispatching and Charging Model 

To guarantee the stability and timeliness of future AEMoD systems, given the relatively 

limited charging resources in comparison to demand volumes, it is critical to answer two 

important operational questions:  

(1) How to cope with the available charging capabilities of each service zone, given the 

number of system vehicles?  

(2) How to smartly manage the dispatching and charging options of different SoC 

vehicles, given customers’ needs and zone resources, in order to minimize the 

maximum and/or average system response time?  

By system response time, we mean the time elapsed between the instant when a customer 

requests a vehicle and the instant when a vehicle starts moving from its parking or charging spot 

toward this customer. 

Motivated by the fact that different customers can be classified in ascending order of their 

required trip distances (and thus the SoC needed for their allocated vehicles), we proposed to 

address the above two questions by introducing a multi-class dispatching and charging scheme 

for AEMoD vehicles, with an option for no charging or partial charging for vehicles with non-

depleted batteries. Arriving vehicles in each service zone are subdivided into different classes in 

ascending order of their SoC, corresponding to the different customer classes. Different 

proportions of each class of vehicles will then be prompted by the fog controller either to wait 

(without charging) for dispatching to their corresponding customer class (i.e., customers whose 

trips require the SoC range of this class of vehicles) or to partially charge to serve the subsequent 

customer class. Vehicles arriving with depleted batteries will be allowed to either partially or 
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fully charge to serve the first or last class of customers, respectively. Clearly, the larger the 

number of classes, the smaller the SoC increase required for a vehicle to move from one class to 

the next; and the smaller the charging time needed to make this transition, the lower the 

burden/requirements on the zone charging resources. On the other hand, given a fixed in-flow 

rate of vehicles to each city zone, more vehicle/customer classes mean less available in-flow 

vehicles to each customer class, which may result in longer service delays and even instabilities 

in their waiting queues. 

Given this proposed multi-class system solution, the above questions can then be re-

phrased as follows:  

(1) What is the minimum number of classes that can fit the available charging resources 

in a given city zone?  

(2) What is the optimal proportion of vehicles from each class to dispatch or 

partially/fully charge both to maintain the overall system stability and to minimize the 

maximum and/or average response time of the system?  

To rigorously address these questions, we first modeled our proposed multi-class charging and 

dispatching solution as a queuing model and set its parameters. 

3.3 Queuing Model and System Parameters 

We considered one service zone controlled by a fog controller connected to the 

following:  

• the service request apps of customers in the zone  

• AEMoD vehicles  

• C rapid charging points distributed in the service zone and designed for short-term 

partial charging, and  
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• one spacious rapid charging station designed for long-term full charging.  

AEMoD vehicles enter the service in this zone after dropping off their latest customers in it. 

Their detection as free vehicles by the zone’s controller can therefore be modeled as a Poisson 

process with rate λv. Customers request service from the system according to a Poisson process. 

Customers are classified into n classes on the basis of the ascending order of their required trip 

distance, and vehicles are classified according to the corresponding SoC to cover this distance. 

From the thinning property of Poisson processes, the arrival process of Class i customers and 

vehicles, i ∈ {0,...,n} are both independent Poisson processes with rates λ(c
i) and λv pi, where pi is 

the probability that the SoC of a vehicle arriving to the system belongs to Class i. Note that p0 is 

the probability that a vehicle will arrive with a depleted battery and will therefore not be able to 

serve immediately. Consequently, λ(c
0) = 0, as no customer will request a vehicle that cannot 

travel any distance. On the other hand, pn is also equal to 0 because no vehicle can arrive to the 

system fully charged, as it has just finished a previous trip. 

Upon arrival, each vehicle of Class i, i ∈ {1,...,n−1}, will park anywhere in the zone until it 

is called by the fog controller to either (1) serve a customer from Class i with probability qi; or 

(2) partially charge up to the SoC of Class i + 1 at any of the C charging points (whenever any of 

them become  free), with probability qi = 1 − qi, before parking again to wait to serve a customer 

from Class i + 1. As for Class 0 vehicles that are incapable of serving before charging, they will 

be directed to either fully charge at the central charging station with probability q0, or partially 

charge at one of the C charging points with probability q0 = 1 − q0. In the first case, after charging 

the vehicle will wait to serve customers of Class n, and in the last case, the vehicle will wait to 

serve customers of Class 1. 
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Table 3-1 List of system and decision parameters 

 

 
The full charging time of a vehicle with a depleted battery is assumed to be exponentially 

distributed with rate μc. Given uniform SoC quantization among the n vehicle classes, the partial 

charging time can then be modeled as an exponential random variable with rate nμc. Note that 

the larger rate of the partial charging process is not due to a speed-up in the charging process but 

rather  to the reduced time of partially charging. Exponentially distributed charging times for 

charging electric vehicles have been widely used in the literature [Liang et al. 2014; Zhang et al. 

2016a] to model randomness in the charging durations of different battery sizes. The customers 

belonging to Class i, arriving at rate λ(c
i), will be served at a rate of λ(v

i), which includes the 

arrival rates of vehicles that (1) arrived to the zone with an SoC belonging to Class i and were 

directed to wait to serve Class i customers; or (2) arrived to the zone with an SoC belonging to 

Class i − 1 and were directed to partially charge to be able to serve Class i customers. 

Given the above description and modeling of variables, the entire zone dynamics can thus 

be modeled by the queuing system depicted in figure 3-2.  This system includes n M/M/1 queues 

for the n classes of customer service, one M/M/1 queue for the charging station, and one M/M/C 

queue representing the partial charging process at the C charging points. 
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Having defined the queuing model for the proposed multiclass dispatching and charging 

system in a city zone, the rest of this report focuses on addressing the two limitation discussed in 

Chapter 2. Chapter 3 discusses the stability conditions of the system and minimum number of 

required classes to cope with the charging resources in any arbitrary city zone. The maximum 

and average response time minimization problems are then formulated and analytically solved in 

chapters 4 and 5, respectively. 

 
Figure 3-2 Joint dispatching and partially/fully charging model, abstracting an AEMoD system 

in one service zone. 
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Chapter 4 System Stability Conditions 

This chapter discusses how we first deduced the stability conditions of our proposed 

multi-class dispatching and charging system, using the basic laws of queuing theory. We then 

derived an expression for the lower bound on the number n of needed classes that fit the charging 

capabilities of any arbitrary service zone. Each of the n classes of customers is served by a 

separate queue of vehicles, with λ(v
i) being the arrival rate of the vehicles that are available to 

serve the customers of the i-th class. Consequently, it is the service rate of the customers in the i-

th arrival queues. We can thus deduce the following from figure 3-2 and the system model in the 

previous chaptee: 

 

Because we know qi qi 1, we substitute qi by 1 qi in order to have a system with n  

 

From the well-known stability condition of an M/M/1 queue [Papoulis and Pillai 2002; Leon-

Garcia 2008], we have the following: 

 

Before reaching the customer service queues, vehicles will go through a decision step 

regarding whether to enter  these queues immediately or to first partially/fully charge. The 

stability of the charging queues should be guaranteed to ensure the global stability of the entire 

system at the steady state. From the model described in the previous chapter and by the well-



17 

known stability conditions of M/M/C and M/M/1 queues [Papoulis and Pillai 2002; Leon-Garcia 

2008], we have the following stability constraints on the C charging points and central charging 

station queues, respectively: 

 
The following lemma illustrates the lower bound on the average in-flow rate of vehicles 

for a given service zone, given its rate of customer demands on AEMoD services. 

Lemma 1: For the stability of the entire system, the in-flow rate of vehicles to a given 

service zone should be more than the total arrival rate of customers belonging to all the classes. 

In other words, 

 

Furthermore, the following lemma establishes a lower bound on the number of classes n, given 

the arrival rate of the vehicles λv, the full charging rate μc, and the number C of partial charging 

points. 

Lemma 2: To guarantee the stability of the charging queues, the number of classes n in 

the system must obey the following inequality: 
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Chapter 5 Maximum Response Time Optimization 

The goal of this work was to minimize the maximum expected response time across all 

system classes. 

5.1 Problem Formulation 

The expected response time of any class was defined as the expected duration between 

any customers entering a request and a vehicle being dispatched to serve them. From the basic 

M/M/1 queue analysis of the i-th customer class, the expression of this expected response time 

for the i-th class can be expressed as follows: 

 

 
Consequently, the maximum of the expected response times across all n classes of the system 

can be expressed as follows: 

 

It is obvious that the system class with the maximum expected response time is the one 

that has the minimum expected response rate. In other words, we have 

 

Consequently, minimizing the maximum expected response time across all classes is equivalent 

to maximizing the minimum expected response rate. By using the epigraph form [Boyd and 

Vandenberghe 2015] of the latter problem, we get the following stochastic optimization problem: 
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The n constraints in (10b) and (10c) represent the epigraph form constraints on the 

original objective function in the right hand side of (9), after separation [Boyd and 

Vandenberghe 2015] and substitution of every λ(v
i) by its expansion form in (2). The constraints 

in (10d) and (10e) represent the stability conditions on charging queues. The constraints in (10f) 

and (10g) are the axiomatic constraints on probabilities (i.e., values being between 0 and 1, and 

sum equal to 1). Finally, constraint (10h) is a strict positivity constraint on the minimum 

expected response rate, which also guarantees the stability of customer queues when combined 

with (10b) and (10c). Indeed, if R is strictly positive, then this guarantees that that the stability 

conditions in (3) will hold with certainty. Clearly, the above problem is a linear program with 

linear constraints, which can be solved analytically by using Lagrangian analysis. This is the 

focus of the next subsection. 

5.2 Optimal Dispatching and Charging Decisions 

The problem in (10) is a convex optimization problem with a second order differentiable 

objective and constraint functions that satisfy Slater’s condition. Consequently, the KKT 
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conditions provide necessary and sufficient conditions for optimality. Therefore, applying the 

KKT conditions to the constraints of the problem and the gradient of the Lagrangian function 

allows us to find the analytical solution of the decisions qi. The Lagrangian function associated 

with the optimization problem in (10) is given by the following expression: 

 

where q is the vector of dispatching decisions (i.e., q = q0,...,qn−1 ), and where 

• α = [αi], such that αi is the associated Lagrange multiplier to the i-th customer queues 

inequality. 

• β = [βi], such that βi is the associated Lagrange multiplier to the i-th charging queues 

inequality. 

• γ = γi , such that γi is the associated Lagrange multiplier to the i-th upper bound inequality. 

• ω = [ωi], such that ωi is the associated Lagrange multiplier to the i-th lower bound 

inequality. 

By applying the KKT conditions to the equality and inequality constraints, the following 

theorem illustrates the optimal solution of the problem in (10). 

Theorem 1: The optimal charging/dispatching decisions of the optimization problem in 

(10) can be expressed as follows: 
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5.3 Maximum Expected Response Time 

Again, because the problem in (10) is convex with differentiable objective and constraint 

functions, then strong duality holds, which implies that the solutions to the primal and dual 

problems are identical. By solving the dual problem, we can express the optimal value of the 

maximum expected response time as the reciprocal of the minimum expected response rate of the 

system. The latter is characterized by the following theorem. 

Theorem 2: The minimum expected response rate R∗ of the entire system can be expressed as 

follows: 

 

5.4 Problem Complexity 

This problem, is formulated as a linear program. Theoretically, the complexity of solving 

algorithms for linear programs (and thus the size of stored information to solve them) has been 
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proved to be (𝑛𝑛
3
4 log(𝑛𝑛

∈
)) per iteration [Liu and Fan 2010], with n as the number of variables and 

epsilon as a stopping criteria. This complexity expression clearly justifies our suggestion to solve 

the problem for each zone locally. Indeed, the complexity heavily depends on the number of 

parameters, which is in this case related to the number of classes n defined in the system. Lemma 

2 clearly established that n scales with the vehicle rate (number of vehicles becoming available 

for service per unit of time). Clearly, the smaller n is, the simpler the problem is. 
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Chapter 6 Average Response Time Optimization  

The goal of of the work presented in this chapter was to minimize the average expected 

response time for the system’s overall customer classes. 

6.1 Problem Formulation 

As stated earlier, the expected response time for each of the classes in the system is 

expressed as in (7). Because our system is divided into n classes, the average expected response 

time across the different classes is expressed as follows: 

 
 

Therefore, minimizing the average expected response time across all the classes of the 

system, while obeying its stability conditions, can be formulated by the following problem. 

 

 
The n constraints in (15b) and (15c) represent the stability constraints in (3) and substituting 

every λ(v
i) by its expansion form in (2). The constraints in (15d) and (15e) represent the stability 
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conditions for charging queues. The constraints in (15f) and (15g) are the axiomatic constraints 

on probabilities (i.e., values being between 0 and 1, and sum equal to 1). 

The above constraints are all linear, but the objective function is obviously not. 

Nonetheless, the following lemma proves that the optimization problem we have is convex 

which allows us to find an absolute exact solution analytically and numerically. 

Lemma 3: Defining the function f as follows: 

 
 

such that λ(v
i) and λ(c

i) are defined in (2) and (3), and the function f is convex over the variables 

q0,q1,...,qn−1. 

Consequently, the problem in (15) is a convex problem with linear constraints, which can 

be solved analytically by using Lagrangian analysis. This is the focus of the next subsection. 

6.2 Optimal Dispatching and Charging Decision 

As proved above, the problem in (15) is a convex optimization problem with a second 

order differentiable objective function and constraints that satisfy Slater’s condition. Like the the 

approach presented in Chapter 4, we can apply the KKT conditions to the constraints of the 

problem and the gradient of the Lagrangian function to find the analytical solution of the 

decisions qi. The Lagrangian function associated with the optimization problem in (15) is given 

by the following expression: 
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where q is the vector of dispatching decisions (i.e., q = q0=,...,qn−1 ), and where α = [αi], β = [βi], γ 

= γi , and ω [ωi] are the vectors of the Lagrange multipliers associated with the inequalities 

constraints of problem (15) and defined in the same way as explained in Chapter 4. 

By applying the KKT conditions to the equality and inequality constraints, the following 

theorem illustrates the optimal solution of the problem in (15). 

Theorem 3: The optimal charging/dispatching decisions of the optimization problem in 

(15) can be expressed as follows:  

 

Otherwise, we have the following: 
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6.3 Problem Complexity 

This problem is formulated as a convex, non-linear problem. Theoretically, the interior 

point method complexity for convex, non-linear programs (and thus the size of information 

stored to solve them) depends on the number of constraints of the problem m, This is expressed 

as 𝑄𝑄(√𝑚𝑚 log �𝑚𝑚
∈
�)  according to Boyd and Vandenberghe (2015), epsilon being a stopping 

criterion. This complexity of expression clearly justifies our suggestion to solve the problem for 

each zone locally. The complexity depends on the number of constraints, which depends strongly 

on the number of classes n defined in the system. Lemma 2 clearly established 2 that n scales 

with the vehicle rate (number of vehicles becoming available for service per unit of time). 

Clearly, the smaller n is, the simpler the problem is. 
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Chapter 7 Simulation Results 

this chapter discusses testing of the merits of our proposed scheme with extensive 

simulations. The metrics used to evaluate these merits were the maximum and average expected 

response times of the different classes. For all the simulations, the full-charging rate of a vehicle 

was set to μc = 0.033 mins-1, and the number of charging points was C = 40. 

For the optimized maximum time solution (figure 7-1) and the average response time 

solution (figure 7-2), the simulations illustrated the interplay of the effect of increasing the 

number of classes 𝜆𝜆𝑣𝑣 𝑎𝑎𝑛𝑛𝑎𝑎 ∑ 𝜆𝜆𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖=1  established in Lemma 1, and effect of increasing the number 

of classes n beyond its strict lower bound introduced in Lemma 2. The figures depict the 

maximum and average expected response times for different values of ∑ 𝜆𝜆𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖=1  while setting 𝜆𝜆𝑣𝑣 

to 15 min-1. For this setting, n =12 is the smallest number of classes that satisfies the stability 

condition in Lemma 2. It is easy to see that the response times for all values of n increase 

dramatically when ∑ 𝜆𝜆𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖=1  approaches λv, thus bringing the system closer to the stability limit 

established in Lemma 1. As also expected, the figures clearly show that further increasing n 

beyond its stability lower bound increases both the maximum and average response times. As 

explained earlier, this effect occurs because of the reduced number of available vehicles to each 

customer class as n grows, given the fixed λv. We thus firmly conclude that the optimal number 

of classes is the smallest value satisfying Lemma 2: 
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Figure 7-1 Expected response times using the maximum response time optimization solution  
 

 

Figure 7-2 Expected response times using the average response time optimization solution for 
different  

For the maximum and average response time optimization solutions, figures 7-3 and 7-4, 

respectively, depict the maximum and average expected response time performances for different 
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distributions of vehicle SoC and customer trip distances, given λv = 8 and therefore n*= 7. By 

decreasing vehicle SoC distribution, we mean that the probability of an arriving vehicle being in 

class i SoC is lower than that of it being in class i − 1 SoC ∀ i ∈ {2,...,n}. We can infer from both 

figures that both the maximum and average response times for the Gaussian distributions of trip 

distances and both Gaussian and decreasing SoCs are the lowest and exhibit the least response 

time variance. Fortunately, these are the most realistic distributions for both variables. This is 

justified by the fact that vehicles arrive to the system after trips of different distances, which 

makes their SoC either Gaussian or slightly decreasing. Likewise, the number of customers 

requiring mid-length distances is usually larger than the numbers requiring very short and very 

long distances. 

 

Figure 7-3 Effect of different customer and SoC distributions on the maximum response time 
optimization solution. 
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Figure 7-4 Effect of different customer and SoC distributions on the average response time 
optimization solution 

 
For the maximum and average response time optimization solutions, figures 7-5 and 7-6, 

respectively, compare the maximum and average expected response time performances 

with ∑ 𝜆𝜆𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖 , for the different decision approaches discussed in Chapter 4, namely the always 

partially charge decision (i.e., qi = 0 ∀ i) and the equal split decision (i.e., qi = 0.5 ∀ i), for λv = 8 

and therefore n = 7. The latter two schemes represent non-optimized policies, in which each 

vehicle takes its own fixed action irrespective of system parameters. The figures clearly show 

superior maximum and average performances for our derived optimal policies in comparison to 

the other two policies. This is especially true as ∑ 𝜆𝜆𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖  gets closer to λv, which represents the 

most properly engineered scenarios (as large differences between these two quantities result in 

very low utilization). Gains of 13.3 percent in the average performance and and 21.3 percent in 

the maximum performance can be noticed in comparison to the always charge policy. This 
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demonstrates the importance of our proposed scheme in achieving lower response times and thus 

better customer satisfaction.  

 

Figure 7-5 Comparison of the maximum response time optimization solution to non-optimized 
policies. 

 

 

Figure 7-6 Comparison of the average response time optimization solution to non-optimized 
policies. 
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Figure 7-7 compares the maximum and average expected response time performance 

produced by the maximum and average response time optimization solutions introduced in 

chapters 4 and 5, respectively, for different values of ∑ 𝜆𝜆𝑐𝑐
(𝑖𝑖)𝑛𝑛

𝑖𝑖  while setting 𝜆𝜆𝑣𝑣 to 15 min-1 (i.e., n = 

12). We can easily see that the maximum expected response times achieved by both solutions are 

the same. On the other hand, the average expected response time given by the average solution is 

slightly lower than that of the maximum solution. These results suggest that the variance in 

performance achieved by both solutions is negligible. Consequently, the one that is obtained with 

less complexity should be used to almost satisfy the minimum value for both metrics. We know 

from chapters 4 and 5 that the maximum solution is obtained by solving a linear optimization and 

the average solution is obtained by solving a convex yet non-linear optimization. It is well 

known that solving the latter requires more computation that the former. For example, when 

interior point methods are used, the maximum number of iterations for the maximum solution is 

10 and that for the average solution is 25. Therefore, the maximum solution is recommended for 

use in future AEMoD systems because of its lower complexity and its negligible degradation in 

its average response time performance in comparison to the average solution.  

Because of the significant differences between the related works and our proposed model 

in the factors considered to affect customer waiting times, we decided that conducting a 

numerical comparison would be inapplicable and non-meaningful. 
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Figure 7-7 Comparison between the maximum minimization and the average minimization of 
the expected response time. 
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36 

Chapter 8 Summary and Conclusions 

In this project, we proposed solutions to the computational and charging bottlenecks that 

threaten the success of AEMoD systems in attracting a large number of customers and solving 

private urban transportation problems.  We also incorporated user-defined special needs in the 

optimization process to further accommodate customers with cognitive and physical disabilities 

in AEMoD operations. The computational bottleneck can be resolved by employing a fog-based 

architecture to distribute the optimization loads over different service zones and to reduce 

communication delays, while matching the nature of the dispatching/charging processes of 

AEMoD vehicles. We also proposed a multi-class dispatching and charging scheme to guarantee 

suitability between the vehicle charge requirements of customers’ trips with special needs and 

the available resources in each city zone. To efficiently engineer this multiclass solution, we 

developed a queuing model, derived its stability conditions, and characterized the optimal 

number of classes to both minimize response time and match zone charging resources. We then 

formulated the problem of optimizing the proportions of vehicles from each class that would 

partially/fully charge or directly serve customers as a stochastic linear optimization problem to 

minimize the maximum expected system response time and as a convex but non-inear 

optimization problems to minimize the average expected system response time. The optimal 

decisions for both problems were analytically derived by using Lagrangian analysis. Simulation 

results demonstrated both the merits of our proposed optimal decision scheme in comparison to 

typical non-optimized schemes and its performance for different distributions of vehicle SoC and 

customer trip distances. The comparison between the maximum and average problem solutions 

exhibited negligible variance, which favored the use of the maximum solution because of its 

lower complexity. 
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For future work, we will study the problem of maximizing system utilization (i.e., 

minimizing the required in-flow vehicle rate to each city zone) while satisfying a maximum 

response time constraint. We will also study scenarios in which non-dispatch vehicles in each 

class serve either lower customer classes or other city zones. 
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